

Development of Recovery System on Nobel Metal lons in Water by Combining of Activated Caron with Ultrasound

Toshio Sakai^{1,2*}, Mao Kondo¹, Shinei Tokida², Kenta Namiki³ and Tomoya Karakama³

¹Graduate School of Science and Technology, Shinshu University 4-17-1 Wakasato, Nagano, 380-8553, Japan ²Faculty of Engineering, Shinshu University 4-17-1 Wakasato, Nagano, 380-8553, Japan ³FUTAMURA CHEMICAL CO., LTD 2-2-62 Gomon-cho, Minokamo-shi, Gifu, 505-0024, Japan tsakai@shinshu-u.ac.jp

Recovery system of noble metal ions in water was developed using activated carbon and ultrasound. The recovery of noble metal ions in water was enhanced by combining of ultrasound with activated carbon powder. For practical application, the continuous recovery system of noble metal ions in water was developed by flow system combining of ultrasound with activated carbon filter.

Keyword: Noble metal ions, Recovery system, Activated carbon, Ultrasound

Toshio Sakai is a full professor at Shinshu University, who received his Ph.D. degree from Tokyo University of Science in 2002, and worked as an intern and a research staff at Genesis Research Institute, Inc. (2000~2003), a postdoctoral research associate at University at Buffalo, The State University of New York (2003-2006), a project researcher at Tokyo University of Science (2006-2007), a tenure track assistant professor at Shinshu University (2007-2012), and an associate professor at Shinshu University (2012-2019).

Mao Kondo is a research staff at TOTOKU INC., who received his Master's degree from Shinshu University in 2022. His master thesis focuses on the nanomaterial fabrication and recovery of noble metal ions in water using ultrasound.

Shinei Tokida is a research staff at SHINKO ELECTRIC INDUSTRIES CO., LTD., who received his Bachelor's degree from Shinshu University in 2023. His thesis focuses on the development of recovery system on noble metal ions in water using ultrasound.

Kenta Namiki is a research staff at FUTAMURA CHEMICAL CO., LTD, who received his Master's degree from Chuo University in 2010. His master thesis focuses on the development of hydrolytic enzymes using genetic recombination technology.

Tomoya Karakama is a research staff at FUTAMURA CHEMICAL CO., LTD, who received his Master's degree from Nagoya University in 2019. His master thesis focuses on the mechanism of bacterial aggregation.

超音波と活性炭を組み合わせた 水中溶存貴金属イオンの回収システムの開発

酒井俊郎^{1,2},近藤真大¹,常田晋永²,並木謙太³,唐鎌智也³ 1*信州大学総合理工学研究科-²信州大学工学部-³フタムラ化学株式会社*

1. はじめに

ツタンカーメンのマスクで知られるように、金は 古くから装飾品などに使用されており、数千年 経った現代においてもその美しさは維持されて いる.このような貴金属の美しさや化学的な安 定性に加え,現代では貴金属の特異的な性質 (電気伝導性, 触媒活性など)を活用した 様々な産業が発展している. そのため, 貴金 属の需要は一段と高まっている.一方で、鉱 山から産出される貴金属の量には限りがあ る. そのため、工業製品廃棄物を資源とみな して,工業製品廃棄物をリサイクルする「都 市鉱山」の概念が提唱され、工業製品廃棄物 から貴金属を回収する循環型社会システム の構築に向けた取り組みが積極的に行われ るようになった 1-0. さらに、工業製品廃棄物 ばかりでなく,工業製品を製造する過程で排 出される廃液中にも多くの貴金属(イオン) を含み、廃液中からの貴金属の回収技術の開 発も循環型社会システム (貴金属のリサイク ル,環境負荷低減など)の構築に向けた重要 な課題である 7.8). 廃液中に含まれる貴金属イ オンを回収する方法として、溶媒抽出 9-11), イオン交換樹脂や活性炭による吸着¹²⁻²¹⁾,バ イオソープション21-24),キレート剤などを使 用した沈殿25,20)などがある.これらの方法は、 廃液中に含まれる貴金属イオンを基材に吸 着もしくは錯体化させて回収する方法と貴 金属イオンを還元して0価の貴金属粒子と して回収する方法に大別される.活性炭は廃 液中の貴金属イオンを吸着する基材として の作用と貴金属イオンを還元して0価の貴 金属粒子として回収する作用の両方を有し ている¹³⁻²¹⁾.また、炭素材料である酸化グラ フェンも水中に溶存している貴金属イオン を還元して0価の貴金属粒子を生成する作 用を有しており, 廃液中の貴金属イオンを回 収するだけでなく,酸化グラフェンと貴金属 粒子を複合化した触媒としての活用も検討 されている 27-31). 筆者らは,水溶性高分子や 不溶性高分子(樹脂)を用いて水中に溶存し ている貴金属イオンを還元して0価の貴金 属微粒子として回収する方法や高分子と貴 金属微粒子の複合材料を有効活用する方法 について検討している³²⁻³⁹⁾. さらに, 筆者ら は,超音波を用いることにより水中に溶存し ている貴金属イオンを還元して0価の貴金 属微粒子として回収する方法40-42)も検討して きた. そこで、本研究では、超音波と活性炭 粉末,活性炭フィルターを組み合わせた水中 溶存貴金属イオンの回収システムの開発に ついて解説する.

2. 活性炭を用いた水中溶存貴金属イオンの回 収

活性炭は多くの細孔を有し、その細孔によ る大きな比表面積のため、古くから吸着材と して使用されている.また,活性炭は貴金属 イオンを吸着する作用や貴金属イオンを還 元する作用を有していることから,水中に溶 存している貴金属イオンの回収にも用いら れている ¹³⁻²¹). そこで,まず,活性炭粉末に よる塩化金酸(HAuCl₄)水溶液中の塩化金イ オン ([AuCl₄]) の回収能を評価した. 活性炭 粉末として,フタムラ化学株式会社製の活性 炭 SE (木質活性炭),活性炭 K (木質活性炭), 活性炭 A (木質活性炭),活性炭 CA (ヤシ 殻活性炭),活性炭GB(石炭活性炭),活性 炭 CI (ヤシ殻活性炭),活性炭 CN (ヤシ殻 活性炭)が使用された(Table 1).活性炭粉末 による HAuCl₄ 水溶液中の [AuCl₄]の回収能 は, 0.5 mM HAuCl₄ 水溶液(50 mL)に活性炭 粉末(0.01 g)を添加して、水中に溶存する [AuCl₄]の濃度を原子吸光高度計(AA)によって経時的に測定し、HAuCl₄水溶液中の [AuCl₄]の残存比(C/C_0)から評価された. C_0 は活性炭粉末添加前のHAuCl₄水溶液中の [AuCl₄]の濃度、C は 活性炭粉末添加後の HAuCl₄水溶液中に残存している[AuCl₄]の濃 度である.HAuCl₄水溶液中の[AuCl₄]の回収 率(%)は($1-C/C_0$)×100より算出された.

Table 1. Properties of activated	carbon	powders
used in this experiment		

Durante	Activated carbon powder						
Ргорепу	SE	К	Α	CA	GB	CI	CN
Iodine adsorption (mg/g)	1050	1210	1070	1220	875	1428	1024
Methylene blue adsorption (mL/g)	180	200	190	180	140	240	120
рН	6.1	6.4	6.0	6.0	9.2	7.5	7.1
Ignition residue (%)	0.0	0.0	1.5	1.1	7.1	0.3	1.0
Average particle size (μm)	28.5	27.5	20.2	31.8	19.6	33.1	20.0
Specific surface area (m²/g)	1637	1320	1103	1282	981	1529	983
Pore volume (cm³/g)	1.68	0.95	0.73	0.66	0.55	0.76	0.40
Average pore diameter (nm)	4.10	2.88	2.63	2.05	2.24	2.00	1.64
Total acid groups (meq/g)	0.522	0.300	0.390	0.290	-	0.214	0.090
Total basic groups (meq/g)	0.280	0.345	0.319	0.429	-	0.421	0.419
Phenolic hydroxyl group (meq/g)	0.266	0.148	0.188	0.139	-	0.106	0.020
Carboxyl group (meq/q)	0.120	0.086	0.569	0.095	-	0.083	0.085

その結果, HAuCl₄ 水溶液に活性炭粉末を添加 して 15 分経つと水中に溶存している[AuCl₄]⁻ 濃度の残存比(*C*/*C*₀)は 0.3~0.7 まで低下し, その後はほとんど変化しなかった(Figure 1). このことから,活性炭粉末は水中に溶存して いる[AuCl₄]⁻の 30~70%程度を回収できるこ とが明らかとなった(Figure 1).

Figure 1. Time course changes in residual ratio (C/C_0) of [AuCl₄]⁻ in aqueous HAuCl₄ solution (0.5 mM) after activated carbon powder (•) SE, (\circ) K, (\blacktriangle) A, (\bigtriangleup) CA, (\triangledown) GB, (\bigtriangledown) CI, and (\blacklozenge) CN put in aqueous HAuCl₄ solution.

HAuCl₄ 水溶液に活性炭粉末を添加してから 40 分後の活性炭粉末粒子の表面を走査型電 子顕微鏡 (SEM) により観察すると,いずれ の活性炭粉末の場合も未処理の活性炭粉末 粒子表面には存在しない約 1 μm 径の粒子

(SEM 像中の白い粒子)が活性炭粉末粒子表 面に確認された. Figure 2 上 (0 min) は未処 理の活性炭 A 粉末粒子表面, Figure 2 下 (40 min) は HAuCl4 水溶液に活性炭 A 粉末を添 加してから 40 分後の活性炭 A 粉末粒子表面 の SEM 像である.活性炭 A 粉末粒子表面に 析出した粒子はエネルギー分散型 X 線分光 法により金 (Au) であることが確認された. これらのことから, HAuCl4 水溶液中の [AuCl4]の回収は, [AuCl4]の活性炭粉末への 吸着だけではなく,活性炭による[AuCl4]の還 元・Au 粒子の生成に起因していることが明 らかとなった.

Figure 2. Scanning electron micrograph (SEM) of (Upper image) activated carbon A and (Lower image) activated carbon A left in an aqueous HAuCl₄ solution (0.5 mM) for 40 min.

3. 超音波と活性炭を組み合わせた水中溶存 貴金属イオンの回収

次に,超音波と活性炭を組み合わせて HAuCl₄ 水溶液中からの[AuCl₄]の回収につい て検討した.0.5 mM HAuCl₄ 水溶液(50 mL) に活性炭粉末(0.01 g)を添加してから15分 後,950 kHz(300 W)超音波の照射を開始す ると,いずれの活性炭粉末においてもHAuCl₄ 水溶液中の[AuCl₄]の残存比(*C*/*C*₀)が低下し, 5~25 分間の超音波照射によりHAuCl₄ 水溶液 中の[AuCl₄]の残存比(*C*/*C*₀)がほぼ0となっ た(Figure 3).

Figure 3. Time course changes in residual ratio (*C*/*C*₀) of [AuCl₄]⁻ in aqueous HAuCl₄ solution (0.5 mM) after 950 kHz (300 W) ultrasonication to aqueous HAuCl₄ solution containing activated carbon powder (Upper panel) (●) SE, (○) K, (▲) A, and (\bigcirc) 950 kHz (300 W) ultrasound alone, and (Lower panel) activated carbon powder (\triangle) CA, (\blacktriangledown) GB, (\bigtriangledown) CI, (\blacklozenge) CN, and (\bigcirc) 950 kHz (300 W) ultrasound alone.

950 kHz超音波自身にも水中に溶存してい る貴金属イオンを還元する作用がある⁴⁰⁻⁴²⁾. HAuCl₄水溶液に950 kHz(300 W)超音波を照 射すると,HAuCl₄水溶液の[AuCl₄]の残存比 (C/C₀)は減少し,照射15分後にはHAuCl₄水 溶液中の[AuCl₄]の残存比(C/C₀)がほぼ0と なる(Figure 3:プロット◇).また,HAuCl₄ 水溶液は透明から赤色に変化したことから もHAuCl₄水溶液に950 kHz(300 W)超音波

照射することにより HAuCl₄水溶液中の [AuCl4]が還元されて金ナノ粒子(平均粒子径 は約40 nm⁴¹⁾)が生成したことが確認される. このように、HAuCl₄水溶液に950 kHz (300 W) 超音波を照射すると、HAuCl₄水溶液中の [AuCl4]が還元されて金ナノ粒子となり、 HAuCl₄水溶液中の[AuCl₄]をほぼ100%回収 することができる. 950 kHz (300 W) 超音波 によるHAuCl₄水溶液中の[AuCl₄]の還元は, 超音波によるキャビテーション効果に起因 する.水に超音波を照射すると水中に微小気 泡(キャビティ)が生成し、その微小気泡が 圧壊する際に高温・高圧場を生み出し,水が ラジカル解離して水素ラジカル(H•)とヒド ロキシラジカル (•OH) を生成する (反応1) 43-47)

$H_2O \to H^{\bullet} + \bullet OH \tag{1}$

生成したH•が還元種として作用してHAuCl₄ 水溶液中の [AuCl₄]⁻が還元されて金ナノ粒子 ((Au⁰)_n)が生成する (反応2, 3)⁴¹⁾.

$[\operatorname{AuCl}_4]^- + 3\operatorname{H}^\bullet \to \operatorname{Au}^0 + 4\operatorname{Cl}^- + 3\operatorname{H}^+$	(2)
$n\mathrm{Au}^0 \to (\mathrm{Au}^0)_n$	(3)

さらに,活性炭粉末を含む HAuCl₄ 水溶液に 950 kHz (300 W) 超音波を照射すると,活性 炭粉末 SE, K, A の場合には[AuCl₄]の回収が 促進(正の相乗効果)(Figure 3 上),活性炭 粉末 CA, GB, CI, CN の場合には抑制(負の相 乗効果)されることが明らかとなった(Figure 3 下).また,SEM 観察により,活性炭粉末粒 子表面に析出した Au 粒子の粒子径は,活性 炭粉末 SE, K, A の場合には超音波照射により 大きくなることが明らかとなった(Figures 4 and 5).

Figure 4. Scanning electron micrograph (SEM) of (Upper image) activated carbon A and (Lower image) activated carbon A left in an aqueous HAuCl₄ solution (0.5 mM) for 40 min using 950 kHz (300 W) ultrasound.

一方で,活性炭粉末 CA, GB, CI, CN の場合 には超音波を照射しても活性炭粉末粒子表 面に析出する Au 粒子の粒子径はほとんど変 化しなかった.(Figure 5).これらのことから, 活性炭粉末と 950 kHz (300 W) 超音波の組み 合わせによる[AuCl4]の回収における正の相 乗効果と負の相乗効果の発現は,活性炭粉末 粒子表面での Au 粒子の形成・成長過程と関 係していることが示唆された.また,これは, 活性炭表面の酸性基量と塩基性基量(Table 1) と相関していることから,超音波による活性 炭表面の酸性基あるいは塩基性基のラジカ ル化が関係しているものと考えられる.

Figure 5 Changes in average diameter of Au particles formed on activated carbon (•) SE, (\circ) K, (\blacktriangle) A, (\triangle) CA, (\triangledown) GB, (\bigtriangledown) CI, and (\blacklozenge) CN, by 950 kHz (300 W) ultrasonication.

また,超音波と活性炭を組み合わせて Na₂PdCl₄ 水溶液中からの[PdCl₄]²⁻の回収につ いて検討した.活性炭粉末(0.01g)を0.5 mM Na₂PdCl₄ 水溶液(50 mL)に添加した場合に は,0.5 mM Na₂PdCl₄ 水溶液(50 mL)中の [PdCl₄]²⁻は20~30%回収された(Figure 6).活 性炭粉末によるHAuCl₄水溶液からの[AuCl₄]⁻ の回収率と比較して,Na₂PdCl₄水溶液中から の[PdCl₄]²⁻の回収率が低いことから,活性炭 による水中溶存貴金属イオンの回収能は金 属イオン種により異なることが明らかとな った.

Figure 6. Time course changes in residual ratio (C/C_0) of $[PdCl_4]^{2-}$ in aqueous Na₂PdCl₄ solution

(0.5 mM) after activated carbon powder (•) SE, (•) K, (\blacktriangle) A, (\triangle) CA, (\triangledown) GB, (\bigtriangledown) CI, and (\blacklozenge) CN put in aqueous Na₂PdCl₄ solution.

950 kHz (300 W) 超音波と活性炭粉末を組み 合わせた場合には, 0.5 mM Na₂PdCl₄水溶液中 の[PdCl₄]²⁻が 30~50%回収された(Figure 7). Na₂PdCl₄ 水溶液中からの[PdCl₄]²⁻の回収にお いても 950 kHz (300 W) 超音波が[PdCl₄]²⁻の 回収を促進することが明らかとなった.

Figure 7. Time course changes in residual ratio (C/C_0) of $[PdCl_4]^{2-}$ in aqueous Na₂PdCl₄ solution after 950 kHz (300 W) ultrasonication to aqueous Na₂PdCl₄ solution (0.5 mM) containing activated carbon powder (•) SE, (•) K, (\blacktriangle) A, (\bigtriangleup) CA, (\blacktriangledown) GB, (\bigtriangledown) CI, (\blacklozenge) CN, and (\diamondsuit) 950 kHz (300 W) ultrasound alone.

Na₂PdCl₄ 水溶液に活性炭粉末を添加してか ら 40 分後の活性炭粉末粒子の表面を走査型 電子顕微鏡(SEM)により観察すると, HAuCl₄ 水溶液中に活性炭粉末を添加した場合と同 様に未処理の活性炭粉末粒子表面には見ら れない粒子が活性炭粉末粒子表面に存在し ていることが確認された.また,エネルギー 分散型 X 線分光法により活性炭粉末粒子表 面に析出した粒子はパラジウム (Pd) である ことが確認された.これらのことから, Na₂PdCl₄ 水溶液中の[PdCl₄]²もイオン状態で 活性炭粉末に吸着するだけではなく,活性炭 により[PdCl₄]²が還元されてPd粒子として析 出することにより回収されることが明らか となった.

4. 超音波と活性炭フィルターを組み合わせた 水中溶存貴金属イオンの回収システムの開発

前述のように、超音波と活性炭を組み合わ せることにより、水中に溶存している貴金属 イオンを効率的に回収できることが明らか となった.そこで、水中溶存貴金属イオンの 回収システムの実装を目指し、取り扱いが容 易な活性炭フィルターを用いて水中に溶存 している貴金属イオンの回収を検討した.活 性炭フィルターとして、フタムラ化学株式会 社製の KFF (嵩高不織布に活性炭を付着させ たフィルター)、UFP (活性炭粉末と接着剤を 混ぜてウレタンを含侵させたフィルター)、 UFG (接着剤付きのウレタンに粒状炭を散布 させたフィルター)、CRF (活性炭抄紙をコル ゲート加工したハニカムフィルター)が使用 された (Table 2).

Table 2. Properties of activated carbon filters used in this experiment

Dreparty	Activated carbon filter			
Property	KFF	UFP	UFG	CRF
Specific surface area (m²/g)	497	279	954	967
Total pore volume (cm³/g)	0.234	0.141	0.442	0.481
Average pore diameter (nm)	1.88	2.02	1.85	1.99
Mesopore volume (cm³/g)	0.053	0.049	0.096	0.129
Micropore volume (cm3/g)	0.237	0.140	0.456	0.458

まず,活性炭フィルターを用いてバッチ式に よる Na₂PdCl₄ 水溶液からの[PdCl₄]²の回収に ついて検討した.活性炭フィルターによる Na₂PdCl₄ 水溶液中の[PdCl₄]²の回収能は,0.5 mM Na₂PdCl₄ 水溶液(50 mL)に活性炭フィル ター(0.1 g)を添加して,水中に溶存する [PdCl₄]²の濃度を原子吸光高度計(AA)で経 時的に測定し,水溶液中の[PdCl₄]²の残存比 (C/C₀)から評価した.C₀は活性炭フィルタ 一添加前の Na₂PdCl₄ 水溶液中の[PdCl₄]²の濃 度,*C*は活性炭粉末添加後のNa₂PdCl₄水溶液 中に残存している[PdCl₄]²⁻の濃度である. Na₂PdCl₄水溶液中の[PdCl₄]²⁻の回収率(%)を

 $(1-C/C_0)$ ×100 より求めた.活性炭フィル ター単体 (0.1 g) (超音波照射なし)による 0.5 mM Na₂PdCl₄水溶液 (50 mL) 中の[PdCl₄]²の 回収率は,KFF では約 20%, UFP では約 20%, UFG では約 40%, CRF では約 8%であった

(Figure 8). バッチ式において 950 kHz (300 W) 超音波を 5~25 min 照射すると、0.5 mM Na₂PdCl₄水溶液 (50 mL) 中の[PdCl₄]²⁻は, KFF では約70%, UFP では約60%, UFG では約 90%, CRF では約40%回収された(Figure 9). これらのことから,活性炭フィルターと 超音波を組み合わせることにより,水中に溶 存している貴金属イオンの回収が促進され ることが明らかとなった.前述したように活 性炭粉末による Na₂PdCl₄ 水溶液中からの [PdCl4]²⁻の回収率は HAuCl4 水溶液からの [AuCl₄]の回収率より低い(Figure 6). また, 超音波による[PdCl₄]²⁻の還元率も[AuCl₄]⁻より 低い(Figure 7). その結果,活性炭粉末と超 音波を組み合わせた場合でも Na2PdCl4 水溶 液中からの[PdCl4]²⁻の回収率は HAuCl4 水溶 液からの[AuCl4]の回収率よりも低くなる

(Figure 7). 活性炭フィルターの場合も同様 の結果が得られている(Figures 8 and 9). 活 性炭による水中溶存貴金属イオンの回収能 や超音波による水中溶存貴金属イオンの還 元能は金属イオン種により異なる. そのため, 活性炭(粉末,フィルター)の量を適宜調整 することにより水中溶存貴金属イオンの回 収率は調整することができる.実際に,超音 波と活性炭フィルターUFG(10g)を組み合 わせると、5.0 mM Na₂PdCl₄ 水溶液(500 mL) 中の[PdCl4]²⁻をほぼ 100%回収することがで きる (Figure 11). また, 処理後の活性炭表面 を走査型電子顕微鏡 (SEM)を用いて観察す ると数百 nm 径の粒子が観察されたことから, Na₂PdCl₄水溶液中の[PdCl₄]₂は活性炭と超音 波により還元されて粒子として回収されて いることが明らかとなった. また, エネルギ 一分散型 X 線分析 (EDS) により活性炭フィ

ルター表面に析出した粒子がパラジウム (Pd) であることも確認された.

Figure 8. Time course changes in residual ratio (C/C_0) of $[PdCl_4]^{2-}$ in aqueous Na₂PdCl₄ solution (0.5 mM) after activated filter (\circ) KFF, (\blacktriangle) UFP, (\bullet) UFG, and (\bigtriangleup) CRF put in aqueous Na₂PdCl₄ solution.

Figure 9. Time course changes in residual ratio (C/C_0) of $[PdCl_4]^{2-}$ in aqueous Na₂PdCl₄ solution after 950 kHz (300 W) ultrasonication to aqueous Na₂PdCl₄ solution (0.5 mM) containing activated carbon filter (\circ) KFF, (\blacktriangle) UFP, (\bullet) UFG, and (\bigtriangleup) CRF.

最後に、水中に溶存している貴金属イオンを 連続的に回収するシステムの開発を試みた. 水中に溶存している貴金属イオンを連続的 に回収するシステムとして流通式システム を作製し、Na₂PdCl₄水溶液中の[PdCl₄]²の回 存している[PdCl4]²⁻の回収は,活性炭フィル ターUFG (10 g) をチャンバーに入れ,ポン プを用いて 5.0 mM Na₂PdCl4水溶液(500 mL) をチャンバー内に約 1000 mL min⁻¹の流速で 流通させながら 950 kHz (300 W) 超音波を照 射する行程を所定時間 (20 min, 30 min) 繰り 返すことにより行われた (Figure 10). 1 回の 流通において Na₂PdCl4 水溶液が活性炭フィ ルターUFG と接触する時間は約 0.5 min であ る. Na₂PdCl4 水溶液が活性炭フィルター UFG と接触する総時間は約 15 min である.

収について検討した. Na₂PdCl₄水溶液中に溶

Figure 10. Schematic illustration on continuous recovery system of noble metal ions in water using activated carbon filter and ultrasound.

流通式システムによる Na₂PdCl₄ 水溶液中の [PdCl₄]²⁻の回収においても,バッチ式と同様 に活性炭フィルターと超音波の組み合わせ により Na₂PdCl₄ 水溶液中の[PdCl₄]²⁻の回収が 促進されることが明らかとなった(Figure 11). 5.0 mM Na₂PdCl₄ 水溶液(500 mL)を活 性炭フィルターUFG(10 g) に 30 min 流通さ せた場合は, Na₂PdCl₄ 水溶液中の約 70%の [PdCl₄]²⁻が回収された(Figure 11). それに対 して,超音波と活性炭フィルターUFG(10 g) を組み合わせて 30 min 流通させた場合には, 5.0 mM Na₂PdCl₄ 水溶液(500 mL)中の[PdCl₄]²⁻ をほぼ 100%回収された(Figure 11).

Figure 11. Changes in residual ratio (C/C_0) of $[PdCl_4]^{2-}$ in aqueous Na₂PdCl₄ solution (5.0 mM) after flowing of aqueous Na₂PdCl₄ solution to activated carbon filter UFG (•) with and (\circ) without 950 kHz (300 W) ultrasonication.

5. おわりに

活性炭には水中に溶存する貴金属イオンを吸 着する作用と還元する作用があり,水中に溶存 する貴金属イオンは活性炭により還元されて貴 金属粒子となり活性炭表面に析出して回収され る. 超音波にも水中に溶存する貴金属イオンを 還元する作用があり,活性炭と組みわせることに より水中に溶存している貴金属イオンの回収が 促進される. 超音波と活性炭を組み合わせた場 合,活性炭の種類により水中に溶存している貴 金属イオンの回収に正の相乗効果,負の相乗 効果が発現することが明らかとなった.また,活 性炭の形態に依存せず,活性炭は超音波と組 み合わせることにより水中に溶存している貴金 属イオンの回収が促進されることが明らかとなっ た. さらに,活性炭フィルターと超音波を組み合 わせた流通式システムにおいて水中に溶存して いる貴金属イオンを連続的に回収できることが 明らかとなった.限られた資源である貴金属の 効率的活用のための新しい貴金属イオン回収・ リサイクルシステムとして今後の発展が期待され る.

6. 謝辞

本研究の遂行にあたり,多大なるご支援を賜り

ましたフタムラ化学株式会社様に厚く御礼申し 上げます.

参考文献

 佐藤修彰; 伊藤良雅; 南條道夫, レアメ タル資源に関する研究(I): ジルコニウム資源と しての Pocos de Caldas, Brasil 産カルダサイト. 東 北大學選鑛製錬研究所彙報 1986, 41, 155-166.

 佐藤修彰; 三村耕司; 南條道夫, レアメ タル資源に関する研究(II): Serra Negra および Tapira, Brasil 産 anatase. <u>東北大學選鑛製錬研究所</u> *彙報* 1986, 42, 141-152.

3. 浜田善久; 佐藤修彰, レアメタルのリサ イクリング. *資源と素材* **1991**, *107*, 109-118.

4. 中西穂高, 資源政策としての都市廃棄
物からの金属リサイクル. 日本学術振興会素材プロセシング第 69 委員会合同シンポジウム資料
1991, 45-63.

5. 芝田隼次;奥田晃彦,貴金属のリサイク ル技術. *資源と素材* 2002, 118, 1-8.

6. 橋本征二; 醍醐市朗; 村上進亮; 松八重 一代; 布施正暁; 中島謙一; 小口正弘; 谷川寛樹; 田崎知宏; 山末英嗣; 梅澤修, 物質ストック勘定 の枠組み: 経済圏に蓄積する物質の潜在廃棄物 および都市鉱山としての評価に向けて. 第 36 回 環境システム研究論文発表会講演集 2008, 135-140.

貴金属・レアメタルのリサイクル技術集 成 材料別技術事例・安定供給に向けた取り組 み・代替材料開発,吉田隆,株式会社エヌ・ティー・
 セス 2007.

 第3節 資源がもっと活きる未来へ. 環境 省 ホ ー ム ペ ー ジ 2023, https://www.env.go.jp/policy/hakusyo/h26/html/hj1401 0103.html.

Akita, S.; Yang, L.; Takeuchi, H., Solvent extraction of gold(III) from hydrochloric acid media by nonionic surfactants. *Hydrometallurgy* **1996**, *43*, 37-46.
 Xing, W. D.; Lee, M. S.; Kim, Y. H.,

Acc. Mater. Surf. Res.

Separation of gold(III) from hydrochloric acid solution containing platinum(IV) and palladium(II) by solvent extraction with Cyanex 272 and LIX 63. *J. Ind. Eng. Chem.* **2018**, *59*, 328-334.

11. Kubota, F.; Kono, R.; Yoshida, W.; Sharaf, M.; Kolev, S. D.; Goto, M., Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. *Sep. Purif. Technol.* **2019**, *214*, 156-161.

12. Samczynski, Z.; Danko, B.; Dybczynski, R., Application of Chelex 100 ion exchange resin for separation and determination of palladium, platinum and gold in geological and industrial materials by neutron activation analysis. *Chem. Anal-Warsaw.* **2000**, *45*, 843-857.

 Gomes, C. P.; Almeida, M. F.; Loureiro, J.
 M., Gold recovery with ion exchange used resins. *Sep. Purif. Technol.* 2001, *24*, 35-57.

14. Zhang, H. G.; Dreisinger, D. B., The adsorption of gold and copper onto ion-exchange resins from ammoniacal thiosulfate solutions. *Hydrometallurgy* 2002, *66*, 67-76.

15. Paclawski, K.; Wojnicki, M., Kinetics of the Adsorption of Gold(Iii) Chloride Complex Ions onto Activated Carbon. *Arch. Metall. Mater.* **2009**, *54*, 853-860.

 Wojnicki, M.; Paclawski, K.; Socha, R. P.;
 Fitzner, K., Adsorption and reduction of platinum(IV)
 chloride complex ions on activated carbon. *T. Nonferr. Metal. Soc.* 2013, *23*, 1147-1156.

17. Wojnicki, M.; Luty-Blocho, M.; Socha, R. P.; Mech, K.; Pedzich, Z.; Fitzner, K.; Rudnik, E., Kinetic studies of sorption and reduction of gold(III) chloride complex ions on activated carbon Norit ROX 0.8. *J. Ind. Eng. Chem.* **2015**, *29*, 289-297.

18. Kishibaev, K. K.; Tokpaev, R. R.; Atchabarova, A. A.; Efremov, S. A.; Voropaeva, N. L.; Fernandez-Sanjurjo, M. J.; Nechipurenko, S. V.; Nauryzbaev, M. K.; Tasibekov, K. S.; Karpachev, V. V., Activated Carbons of Varied Nature in Recovery of Gold. Russ. J. Appl. Chem+. 2016, 89, 381-387.

19. Li, H. B.; Dong, X. L.; da Silva, E. B.; de Oliveira, L. M.; Chen, Y. S.; Ma, L. N. Q., Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. *Chemosphere* **2017**, *178*, 466-478.

20. Wojnicki, M.; Rudnik, E.; Socha, R. P.; Fitzner, K., Platinum(IV) Chloride Complex Ions Adsorption on Activated Carbon Organosorb 10CO. *Aust. J. Chem.* **2017**, *70*, 769-775.

21. Kwak, I. S.; Bae, M. A.; Won, S. W.; Mao, J.; Sneha, K.; Park, J.; Sathishkumar, M.; Yun, Y. S., Sequential process of sorption and incineration for recovery of gold from cyanide solutions: Comparison of ion exchange resin, activated carbon and biosorbent. *Chem. Eng. J.* **2010**, *165*, 440-446.

22. Ogata, T.; Nakano, Y., Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin. *Water Research* **2005**, *39*, 4281-4286.

23. Mack, C.; Wilhelmi, B.; Duncan, J. R.; Burgess, J. E., Biosorption of precious metals. *Biotechnology Advances* **2007**, *25*, 264-271.

24. Park, D.; Yun, Y. S.; Park, J. M., The Past, Present, and Future Trends of Biosorption. *Biotechnology and Bioprocess Engineering* **2010**, *15*, 86-102.

25. Donia, A. M.; Atia, A. A.; Elwakeel, K. Z., Gold(III) recovery using synthetic chelating resins with amine, thio and amine/mercaptan functionalities. *Sep. Purif. Technol.* **2005**, *42*, 111-116.

26. Aydin, A.; Imamoglu, M.; Gulfen, M., Separation and recovery of gold(III) from base metal ions using melamine-formaldehyde-thiourea chelating resin. *J. Appl. Polym. Sci.* **2008**, *107*, 1201-1206.

27. Zhang, N.; Qiu, H. X.; Liu, Y.; Wang, W.; Li, Y.; Wang, X. D.; Gao, J. P., Fabrication of gold nanoparticle/graphene oxide nanocomposites and their excellent catalytic performance. *J. Mater. Chem.* **2011**, *21*, 11080-11083. 28. Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R., Synthesis of "Clean" and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide. *J. Am. Chem. Soc.* **2011**, *133*, 3693-3695.

29. Sharma, S.; Kumar, A. S. K.; Rajesh, N., A perspective on diverse adsorbent materials to recover precious palladium and the way forward. *Rsc Adv.* **2017**, *7*, 52133-52142.

Kolarik, J.; Bakandritsos, A.; Badura, Z.; Lo,
R.; Zoppellaro, G.; Kment, S.; Naldoni, A.; Zhang, Y.;
Petr, M.; Tomanec, O.; Filip, J.; Otyepka, M.; Hobza,
P.; Zboril, R., Carboxylated Graphene for Radical-Assisted Ultra-Trace-Level Water Treatment and Noble
Metal Recovery. *Acs Nano* 2021, *15*, 3349-3358.

31. Das, M. R.; Hussain, N.; Duarah, R.; Sharma, N.; Sarmah, P.; Thakur, A.; Bhattacharjee, P.; Bora, U.; Boukherroub, R., Metal nanoparticles decorated twodimensional nanosheets as heterogeneous catalysts for coupling reactions. *Catal. Rev.* **2022**.

32. Sakai, T.; Alexandridis, P., Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. *Langmuir* **2004**, *20*, 8426-8430.

33. Sakai, T.; Alexandridis, P., Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. *J. Phy. Chem. B* **2005**, *109*, 7766-7777.

34. Sakai, T.; Alexandridis, P., Spontaneous formation of gold nanoparticles in poly(ethylene oxide)-poly(propylene oxide) solutions: Solvent quality and polymer structure effects. *Langmuir* **2005**, *21*, 8019-8025.

35. Sakai, T.; Alexandridis, P., Size- and shapecontrolled synthesis of colloidal gold through autoreduction of the auric cation by poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solutions at ambient conditions. *Nanotechnology* **2005**, *16*, S344-S353. 36. Sakai, T.; Alexandridis, P., Ag and Au monometallic and bimetallic colloids: Morphogenesis in amphiphilic block copolymer solutions. *Chem. Mater.* **2006**, *18*, 2577-2583.

37. Sakai, T.; Alexandridis, P., High-yield synthesis of gold microplates using amphiphilic block copolymers: Are lyotropic liquid crystals required? *Macromolecular Symposia* **2010**, *289*, 18-24.

38. Sakai, T.; Horiuchi, Y.; Alexandridis, P.; Okada, T.; Mishima, S., Block copolymer-mediated synthesis of gold nanoparticles in aqueous solutions: Segment effect on gold ion reduction, stabilization, and particle morphology. *J. Colloid Interface Sci.* **2013**, *394*, 124-131.

酒井俊郎,金イオンを回収する高分子.
 分離技術 2019,49,46-50.

40. Sakai, T.; Enomoto, H.; Sakai, H.; Abe, M., Hydrogen-assisted fabrication of spherical gold nanoparticles through sonochemical reduction of tetrachloride gold(III) ions in water. *Ultrason. Sonochem.* **2014**, *21*, 946-950.

41. Sakai, T.; Enomoto, H.; Torigoe, K.; Sakai,
H.; Abe, M., Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions. *Colloid Surf.* A 2009, 347, 18-26.

42. Sakai, T.; Miwa, S.; Okada, T.; Mishima, S., Autoreduction of tetrachloride gold(III) ions and spontaneous formation of gold nanoparticles in sonicated water. *Nonlinear Acoustics, AIP Conference Proceedings* **2012**, *1474*, 167-170.

43. Weissler, A., Formation of Hydrogen Peroxide by Ultrasonic Waves: Free Radicals. *J. Am. Chem. Soc.* **1959**, *81*, 1077-1081.

44. Hart, E. J.; Henglein, A., Free radical and free atom reactions in the sonolysis of aqueous iodide and formate solutions. *J. Phys. Chem.* **1985**, *89*, 4342-4347.

45. Gutierrez, M.; Henglein, A.; Dohrmann, J.K., H Atom Reactions in the Sonolysis of Aqueous Solutions. *J. Phys. Chem.* **1987**, *91*, 6687-6690.

Acc. Mater. Surf. Res.

Buxton, G. V.; Greenstock, C. L.; Helman,
W. P.; Ross, A. B., Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O– in Aqueous Solution. *J. Phys. Chem. Ref. Data* 1988, *17*, 513.

47. Nagata, Y.; Hirai, K.; Bandow, H.; Maeda,
Y., Decomposition of hydroxybenzoic and humic acids in water by ultrasonic irradiation. *Environ. Sci. Technol.* 1996, *30*, 1133-1138.